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     Abstract 

 The experimental chemical shifts and coupling constants of 
fi ve borates of general formula BH n Pz 4 – n  [from the borohy-
dride to tetrakis(pyrazol-1-yl)borate] anions were compared 
with calculations carried out at the B3LYP/6-311 +  + G(d,p) 
level (GIAO for absolute shieldings), in general with satisfy-
ing results. The most stable conformations of pyrazolylborate 
anions are similar to those of neutral pyrazolylmethanes.  

   Keywords:    B3LYP/6-311 +  + G(d,p);   coupling constants; 
  GIAO;   NMR;   pyrazolylborates;   pyrazolylmethanes.    

   Introduction 

 Pyrazolylborates are fascinating molecules that formally 
originate from the borohydride anion (tetrahydroborate) ( 1  
in Figure  1  ) replacing up to four H atoms for pyrazol-1-yl 
rings (Trofi menko , 1999 ). When the number of pyrazoles is 3, 
like in  4 , these compounds are named scorpionates (Pettinari, 
2008  ). Tris(pyrazolyl)borates and their analogues can be con-
sidered as the tripodal equivalent of cyclopentadiene ligands 
and have been used in catalysis, bioinorganic models systems, 
metal extraction, and biomedicine. 

 Discovered by Swiatoslaw Trofi menko  (1966)  they en-
joyed an enormous success as ligands in coordination chem-
istry. Alone or in collaboration with Trofi menko we have 
devoted several papers to these compounds (Aubagnac et 
al. , 1991 ;  L ó pez et al., 1994 ; Aubagnac et al. , 1995 ;  L ó pez 
et al., 1995 ; Janiak et al.  1996 ; Sanz et al. , 1996 ; Claramunt 
et al. , 2004a , b ; Santa Mar í a et al., 2007; Trofi menko et al. , 
2007 ). One of the most signifi cant of our contributions was 
entitled  ‘ Structure of bis-, tris- and tetrakispyrazolylborates in 
the solid state (X-ray crystallography) and in solution ’  ( L ó pez 
et al., 1990 ). On the other hand, we have been interested in 
the  ab initio  calculation of NMR properties, chemical shifts 

*   Dedicated to Professor C. Foces-Foces on his untimely death on 
December 2010.  

(Alkorta and Elguero , 1998 ; Alkorta et al. , 2010a ) and cou-
pling constants (Alkorta and Elguero , 2003a ,  2010b ) for sev-
eral years. A natural extension of this work was to calculate 
the conformations of minimum energy as well as the chemical 
shifts and coupling constants reported in ( L ó pez et al., 1990 ). 
This paper concerns the fi ve compounds of Figure  1 .  

  Results and discussion 

 Only the X-ray structure of tetrakis(pyrazol-1-yl)borate ( 5 ) 
has been determined (sodium and potassium salts) ( L ó pez 
et al., 1990 ). For all of them, we have calculated the mini-
mum energy conformations. The calculations were car-
ried out at the B3LYP/6-311 +  + G(d,p) level verifying in all 
cases that the structures were minima (number of imaginary 
frequencies = 0). On these geometries we calculated the abso-
lute shieldings (  σ  , ppm, within the GIAO approximation) and 
the coupling constants ( J , Hz) (see Computational details). 
B3LYP/6-311 +  + G(d,p) calculations yield acceptable results 
for computed NMR properties (Alkorta and Elguero , 1998 , 
 2003a , b ; Alkorta et al. , 2009  , 2010a ; Jacob et al. , 2010 ). 

 It appears that no conformational analysis has been carried 
out on polypyrazolylborates ( 3 ,  4  and  5  and their C-substituted 
derivatives) while the conformation of their metal complexes 
have been widely examined (Trofi menko , 1971 ; Calderon et 
al. , 1972 ; DaCruz and Zimmer , 1998 ; De Bari and Zimmer , 
2004 ; Agrifoglio and Capparelli , 2005 ; Fraser et al. , 2007 ; 
Mutseneck et al. , 2010 ). 

  Conformational analysis 

 We carried out theoretical studies (MM2 and MNDO) of 
the conformational analysis of bis, tris and tetrakis(pyrazol-
1-yl)methanes, related to the compounds of this work but 
with a central C atom instead of a B -  one (Claramunt et al. , 
1989 ). We also studied, at B3LYP/6-31G(d) computational 
level, the conformational space of tris(2-methylbenzimi-
dazol-1-yl)methane, a compound related to  4  (Alkorta and 
Elguero , 2010c ). In Table  1   are the energies associated with 
the different minima and in Figure  2   the corresponding geo-
metries; to characterise the geometries we have used the 
same torsion angles ( φ  A ,  φ  B ,....) defi ned in our pyrazolyl-
methanes paper (Claramunt et al. , 1989 ). 

 It is interesting to compare the minima found in the 
XH n Pz 4-n  series (n = 0–4) with X = B -  (Figure  1 ) and C (Figure 
 3  ) both calculated at the B3LYP/6-311 +  + G(d,p) level. 

 For n = 4, tetrahydroborate or borohydride ( 1 ) and meth-
ane ( 1 ′  ), there is a single minimum in both cases with  T   d   
symmetry. 

 For n = 3, (pyrazol-1-yl)trihydroborate ( 2 ) and 1-meth-
ylpyrazole ( 2 ′  ), there is a single minimum in both cases 
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 Figure 1    Borohydride and pyrazolylborate anions.    

 Table 1      Energies at B3LYP/6-311 +  + G(d,p) computational level (absolute values in hartrees and relative values in kJ/mol    ; dipole moments 
in D).  

Compound SG SCF energy Dipole E rel   φ   A   φ   B   φ   C   φ   D 

 1  T   d   - 27.27523 0.00  –  –  –  –  – 
 2  C   s   - 252.39670 6.57  – 180.0    60.6  - 60.6  – 
 3  C   2   - 477.51386 2.48  –    83.6    83.6  –  – 
 4a  C   s   - 702.61929 1.81    0.0    98.9  - 143.4  - 25.8  – 
 4b  C   3   - 702.61172 2.77 19.9 117.9  - 172.8    53.9  – 
 5a  S   4   - 927.72243 0.00    0.0  - 54.0    54.0  - 54.0 54.0
 5b  D   2   - 927.70916 0.00 34.8    80.4    80.4    80.4 80.4

-

3 (C2)2 (Cs)

4a (Cs)

5a (S4) 5b (D2)

4b (C3)

 Figure 2    Minimum energy conformations of pyrazolylborates.    

( 2  and  2 ′  ) with  C   s   symmetry. Both minima have a similar 
disposition. 

 For n = 2, X = C,  3 ′   has two minima, while for X = B,  3  
[bishydridobis(pyrazol-1-yl)borate] has only one minimum 
of  C   2   symmetry. The most stable minimum for X = C has  C   2   
symmetry, the second minimum  C   1   (E rel  12.7   kJ/mol  ) is less 
stable. Since the B-N bond is longer than the C-N bond in 

these compounds [1.54  Å   vs . 1.44  Å  (Claramunt et al. , 1989 )], 
the second minimum found for  3 ′   corresponds to a transition 
state, TS, in  3 . 

 For n = 1, hydrotris(pyrazol-1-yl)borate ( 4 ) and the corres-

ponding methane derivative ( 4 ′  ), two minima have been cal-
culated in both families. The most stable one has  C   s   symmetry 
for X = B and  C   1   (but actually is similar to the previous one) for 
X = C. The second minimum has  C   3   symmetry in both families 
with E rel  19.9 and 26.4   kJ/mol   for X = B and C, respectively. 

 Finally, for n = 0, tetrakis(pyrazol-1-yl)borate ( 5 ) and the 
corresponding methane derivative ( 5 ′  ), two minima have 
been located in both families having  S   4   and  D   2   symmetries, 
 S   4   being always the most stable and the E rel  of the  D   2   is 
34.8 and 32.6   kJ/mol   for X = B and C, respectively. Note that 
for  5  the X-ray structures (Na  +   and K  +   salts) ( L ó pez et al., 
1990 ) [reported in the Cambridge Structural Database with 
the refcode KILZEK (Allen , 2002a ; Allen and Motherwell , 
2002b )] are very different from the calculated ones; this 
is due to the pincer effect (two alkali cation linking two 
pyrazoles). 

 Qualitatively, the results concerning the pyrazolylmethanes 
(series ’ ) are in agreement with those obtained at the MNDO 
level (Claramunt et al. , 1989 ).  

  NMR studies 

 Experimental results are reported in Tables  2   and  3    and cal-
culated ones in Tables  4   and  5  .  

  Calculated absolute shieldings (Table 4) 

 Examining the data of Table  4  it appears that many   σ   values 
vary with the number of pyrazoles in a smooth manner (com-
pounds  2 – 5 ). When two conformations are available ( 4a / 4b  
and  5a / 5b ),  4b  and  5a  are much better than the two other 
ones. This has nothing to do with the energy nor with any 
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 Table 2      Experimental chemical shifts (  δ  , ppm) [from reference 
( L ó pez et al., 1990 ) unless indicated otherwise].    

N
B

N

H3 H4

H5
12

3 4

5

Compound  1 H  11 B  13 C  15 N

BH 4  -  ( 1 )  - 0.5 a  - 36.0 a  –  – 

PzBH 3  -  ( 2 )  –  - 9.9 b 140.8 (C3) b  - 132.0 (N1) b 
104.9 (C4) b  - 71.9 (N2) b 
137.2 (C5) b 

Pz 2 BH 2  -   ( 3 ) 4.0 (BH 2 )  - 6.54 141.3 (C3)  - 137.3 (N1)
7.54 (H3) 105.6 (C4)  - 70.4 (N2)
6.25 (H4) 137.1 (C5)
7.67 (H5)

Pz 3 BH -  ( 4 ) 5.5 (BH)  - 0.90 141.9 (C3)  - 141.9 (N1)
7.36 (H3) 106.0 (C4)  - 68.8 (N2)
6.05 (H4) 135.7 (C5)
7.39 (H5)

Pz 4 B -  ( 5 ) 7.65 (H3) 1.35 142.3 (C3)  - 147.5 (N1)
6.08 (H4) 106.9 (C4)  - 77.3 (N2)
7.18 (H5) 136.3 (C5)

    a Taken from (Fijalkowski and Grochala,  2009 ). 
b Estimated values using an empirical model and the values for 
compounds  3 – 5  (L ó pez et al., 1990).   
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 Figure 3    Methane and pyrazolylmethanes.    

 Table 3      Experimental coupling constants ( J , Hz) [from reference ( L ó pez et al., 1990 ) unless signaled].  

BH 4  -  ( 1 )  1  J (BH) = 83   (Fijalkowski and Grochala,  2009 ),  1  J (BH) = 81.0 (Ruman et al.,  2007 )

PzBH 3  -  ( 2 )  1  J (C 3 H 3 ) = 180.7*,  1  J (C 4 H 4 ) = 174.2*,  1  J (C 5 H 5 ) = 182.8*,  3  J (H 3 H 4 )/ 3  J (H 4 H 5 ) =  0.83*

Pz 2 BH 2  -   ( 3 )  1  J (BH) = 100,  1  J (BH) = 96 (Trofi menko , 1967 ),  3  J (H 3 H 4 ) = 1.7,  3  J (H 4 H 5 ) = 2.1,
 4  J (H 3 H 5 ) =  0.65,  1  J (C 3 H 3 ) = 181.8,  2  J (C 3 H 4 ) = 7.15,  3  J (C 3 H 5 ) = 7.15,  1  J (C 4 H 4 ) = 174.9, 
 2  J (C 4 H 3 ) = 10.3,  2  J (C 4 H 5 ) = 10.3,  1  J (C 5 H 5 ) = 183.9,  3  J (N 1 H 3 ) =  6.7,  3  J (N 1 H 4 ) =  6.7, 
 2  J (N 2 H 3 ) = 12.8

Pz 3 BH -  ( 4 )  1  J (BH) = 105 (Trofi menko , 1967 ),  3  J (H 3 H 4 ) = 1.65,  3  J (H 4 H 5 ) = 2.2,  1  J (C 3 H 3 ) = 182.55,  
2  J (C 3 H 4 ) = 7.2,  3  J (C 3 H 5 ) = 7.2,  1  J (C 4 H 4 ) = 175.85,  2  J (C 4 H 3 ) = 10.15,  2  J (C 4 H 5 ) = 10.15, 
 1  J (C 5 H 5 ) = 186.1,  2  J (C 5 H 4 ) =  6.8,  3  J (C 5 H 3 ) =  4.4,  3  J (C 5 -N-B-H) = 2.4,  3  J (N 1 H 3 ) = 7.7, 
 3  J (N 1 H 4 ) = 7.7,  2  J (N 2 H 3 ) = 13.0

Pz 4 B -  ( 5 )  4  J (BH 4 ) =  0.9,  3  J (H 3 H 4 ) = 1.7,  3  J (H 4 H 5 ) = 2.3,  1  J (C 3 H 3 ) = 183.8,  3  J (C 3 B) = 2.9,  
1  J (C 4 H 4 ) = 176.4,  2  J (C 4 H 3 ) = 10.1**,  2  J (C 4 H 5 ) = 9.7**,  3  J (C 4 B) = 1.7,  1  J (C 5 H 5 ) = 186.7, 
 2  J (C 5 B) = 3.5,  1  J (N 1 B) = 30.0,  3  J (N 1 H 3 ) =  6.0,  3  J (N 1 H 4 ) = 5.5,  2  J (N 1 H 5 ) = 5.5,  2  J (N 2 H 3 ) = 13.4

   All couplings involving boron refer to  11 B.   
*Estimated values using an empirical model and the values for compounds  3 – 5  (L ó pez et al., 1990); 
**unassigned.   

 Table 4      Calculated absolute shielding (  σ  , ppm).    

N

B

N

H3 H4

H5
12

3 4

5

Compound  1 H  11 B  13 C  15 N

BH 4  -  ( 1 ) 32.12 154.17  –  – 
PzBH 3  -   ( 2 ) 29.17 (BH 3 ) 124.54 44.72 (C3)  - 32.30 (N1)

24.76 (H 3 ) 84.30 (C4)  - 104.98 (N2)
26.30 (H 4 ) 46.22 (C5)
24.52 (H 5 )

Pz 2 BH 2  -   ( 3 ) 27.95 (BH 2 ) 111.17 43.04 (C3)  - 27.64 (N1)
24.77 (H3) 81.53 (C4)  - 101.45 (N2)
26.20 (H4) 44.84 (C5)
24.18 (H5)

Pz 3 BH -   ( 4a ) 26.53 (BH) 105.38 43.14 (C3)  - 14.83 (N1)
24.68 (H3) 79.54 (C4)  - 102.12 (N2)
26.00 (H4) 47.11 (C5)
24.43 (H5)

Pz 3 BH -   ( 4b ) 26.85 (BH) 105.43 42.35 (C3)  - 18.05 (N1)
24.68 (H3) 80.74 (C4)  - 97.73 (N2)
26.10 (H4) 44.36 (C5)
23.52 (H5)

Pz 4 B -  ( 5a ) 24.61 (H3) 103.55 40.77 (C3)  - 10.34 (N1)
26.02 (H4) 80.01 (C4)  - 94.99 (N2)
24.24 (H5) 42.33 (C5)

Pz 4 B -  ( 5b ) 24.64 (H3) 102.82 41.41 (C3)  - 8.94 (N1)
26.08 (H4) 79.54 (C4)  - 101.81 (N2)
23.90 (H5) 44.53 (C5)
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 Table 5      Calculated coupling constants ( J , Hz) corresponding to those of Table 3.  

BH 4  -  ( 1 )  1  J (BH) = 78.8

PzBH 3  -  ( 2 )  1  J (C 3 H 3 ) = 165.1,  1  J (C 4 H 4 ) = 156.8,  1  J (C 5 H 5 ) = 170.3,  3  J (H 3 H 4 )/ 3  J (H 4 H 5 ) =  0.79

Pz 2 BH 2  -   ( 3 )  1  J (BH) = 97.4,  3  J (H 3 H 4 ) = 1.05,  3  J (H 4 H 5 ) = 1.54,  4  J (H 3 H 5 ) =  0.13,  1  J (C 3 H 3 ) = 166.5,  
2  J (C 3 H 4 ) =  6.5,  3  J (C 3 H 5 ) = 7.0,  3  J (C 3 B) = 3.1,  1  J (C 4 H 4 ) = 158.3,  2  J (C 4 H 3 ) = 11.8,  
2  J (C 4 H 5 ) = 9.6,  1  J (C 5 H 5 ) = 178.6,  3  J (N 1 H 3 ) =  4.5,  3  J (N 1 H 4 ) = 2.8,  2  J (N 2 H 3 ) = 9.0

Pz 3 BH -   ( 4a )  1  J (BH) = 98.0,  3  J (H 3 H 4 ) = 1.03,  3  J (H 4 H 5 ) = 1.68,  1  J (C 3 H 3 ) = 169.2,  2  J (C 3 H 4 ) =  6.4,  
3  J (C 3 H 5 ) = 7.0,  3  J (C 3 B) = 3.2,  1  J (C 4 H 4 ) = 159.1,  2  J (C 4 H 3 ) =  11.8,  2  J (C 4 H 5 ) = 9.6,  
1  J (C 5 H 5 ) = 170.7,  2  J (C 5 H 4 ) = 8.7,  3  J (C 5 H 3 ) =  4.0,  3  J (C 5 -N-B-H) = 2.6,  3  J (N 1 H 3 ) =  4.5,  
3  J (N 1 H 4 ) = 2.6,  2  J (N 2 H 3 ) = 9.0

Pz 3 BH -   ( 4b )  1  J (BH) = 102.5,  3  J (H 3 H 4 ) = 1.06,  3  J (H 4 H 5 ) = 1.69,  1  J (C 3 H 3 ) = 170.3,  2  J (C 3 H 4 ) =  6.6,  
3  J (C 3 H 5 ) = 7.1,  3  J (C 3 B) = 2.3,  1  J (C 4 H 4 ) = 159.4,  2  J (C 4 H 3 ) = 11.6,  2  J (C 4 H 5 ) = 10.2,  
1  J (C 5 H 5 ) = 174.8,  2  J (C 5 H 4 ) = 8.8,  3  J (C 5 H 3 )  = 3.8,  3  J (C 5 -N-B-H) = 5.4,  3  J (N 1 H 3 ) =  4.4,  
3  J (N 1 H 4 ) = 2.6,  2  J (N 2 H 3 ) = 8.9

Pz 4 B -  ( 5a )  4  J (BH 4 ) =  0.5,  3  J (H 3 H 4 ) = 1.04,  3  J (H 4 H 5 ) = 1.94,  1  J (C 3 H 3 ) = 168.8,  3  J (C 3 B) = 3.8,  
1  J (C 4 H 4 ) = 160.6,  2  J (C 4 H 3 ) = 11.4,  2  J (C 4 H 5 ) = 9.8,  3  J (C 4 B) = 1.9,  1  J (C 5 H 5 ) = 178.6,  
2  J (C 5 B) = 3.8,  1  J (N 1 B) = 20.2,  3  J (N 1 H 3 ) =  4.5,  3  J (N 1 H 4 ) = 2.8,  2  J (N 1 H 5 ) = 3.6,  2  J (N 2 H 3 ) = 9.0

Pz 4 B -  ( 5b )  4  J (BH 4 ) =  0.4,  3  J (H 3 H 4 ) = 1.02,  3  J (H 4 H 5 ) = 1.90,  1  J (C 3 H 3 ) = 169.4,  3  J (C 3 B) = 2.7,  
1  J (C 4 H 4 ) = 160.4,  2  J (C 4 H 3 ) = 11.7,  2  J (C 4 H 5 ) = 9.5,  3  J (C 4 B) = 1.8,  1  J (C 5 H 5 ) = 175.6,  2  J (C 5 B) = 3.8,  
1  J (N 1 B) = 20.2,  3  J (N 1 H 3 ) =  4.6,  3  J (N 1 H 4 ) = 2.7,  2  J (N 1 H 5 ) = 3.8,  2  J (N 2 H 3 ) = 9.2
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 Figure 4    The trendline of the fi gure on the right corresponds to:   σ   11 B = (96.5 ± 0.5) + (28.2 ± 0.9) 1/no. of pyrazoles, n = 4, R 2 =  0.998 [eq. 3].    

experimental data but with a consistent way to introduce suc-
cessively pyrazole rings on the boron atom. 

 For instance, the central boron atom shows a curvilinear 
variation (Figure  4  , left) that can be transformed into a lin-
ear one by using 1/number of pyrazoles. A similar variation 
was observed with the absolute shielding of the  1 H of BH: 
  σ   1 H = (24.8 ± 0.9) + (1.7 ± 0.3) no. of H atoms, n = 4, R 2  = 0.936 [eq. 
1]. The correlation coeffi cient is not very good because the re-
lation was curvilinear; a better agreement is obtained using the 
square of the number of H atoms:   σ   1 H = (26.4 ± 0.3) + (0.34 ± 0.03) 
no. of H atoms 2 , n = 4, R 2 =  0.988 [eq. 2]. 

 The same happens with the  13 C absolute shieldings (Figure 
 5  ). The absolute shieldings of C4 show a curvature that fi t bet-
ter with   σ   13 C = (78.7 ± 0.1) + (5.6 ± 0.2) 1/no. of pyrazoles, n = 4, 
R 2 =  0.997 [eq. 4]. Since the slopes of Figure  3  are very similar 
it is possible to adjust all the data to   σ   13 C =  - (1.3 ± 0.1) no. of 
pyrazoles + (45.9 ± 0.4)C3 + (84.8 ± 0.4)C4 + (47.6 ± 0.4)C5, n = 12, 
R 2  = 1.00 [eq. 5]. 

 When  15 N absolute shieldings were considered it appears 
that  4b  and  5a  fi t much better than  4a  and  5b  the correlation 
with the number of pyrazoles (Figure  6  ).  
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 Figure 5     Plot of σ13C vs. the number of pyrazoles.  
 The trendlines of the fi gure are: C3,   σ   13 C = (45.9 ± 0.4) - (1.3 ± 0.1) no. of 
pyrazoles, n = 4, R 2 =  0.978 [eq. 6]; C4,   σ   13 C = (85.0 ± 1.0) - (1.4 ± 0.4) no. 
of pyrazoles, n = 4, R 2 =  0.884 [eq. 7]; C5,   σ   13 C = (47.5 ± 0.6) - (1.2 ± 0.2) 
no. of pyrazoles, n = 4, R 2 =  0.948 [eq. 8].    
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  Experimental chemical shifts vs. calculated absolute 

shieldings (Tables 2 and 4) 

 We have tried different proportions of  4a / 4b  and  5a / 5b  for 
different nuclei and the best results (in a statistical sense) were 
obtained with 80 %   4a   – 20 %   4b  and 100 %   5a . According to 
Table  1  calculations,  4b  is less stable than  4a  (19.9   kJ/mol  ) 
but has a larger dipole moment (2.77  vs . 1.81 D). In the case 
of  5a   vs .  5b  the energy difference is more important (34.8   kJ/
mol  ) and both have 0 D dipole moments. In all comparisons 
between experimental and calculated properties (  δ   and J) we 
will use  1 ,  2 ,  3 ,  4a,b  (80 %   4a  –  20 %   4b ) and  5a . 

 In general,  1 H chemical shifts are too sensitive to sol-
vent effects to afford good correlations with calculated ab-
solute shieldings, however, the data of Tables  2  and  4  are 
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 Figure 6     Plot of σ15N vs. the number of pyrazoles.    
 The trendlines of the fi gure are: N1,   σ   15 N =  - (40.9 ± 1.9) + (7.5 ± 0.7) no. of pyrazoles, n = 4, R 2 =  0.984 [eq. 9]; N2,   σ   15 N =  - (108.2 ± 0.4) + (3.4 ± 0.2) 
no. of pyrazoles, n = 4, R 2 =  0.996 [eq. 10].    
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 Figure 7     Plot of δ11B vs. σ11B.     
 Trendline   δ   11 B = (94.1 ± 4.3)-  (0.88 ± 0.04)   σ   11 B, n = 7, R 2  = 0.990 [eq. 
12] [includes BMe 3  and BF 3  · OEt 2 , the reference,   δ   11 B = 0.0 (Alkorta 
and Elguero , 1998 )].    
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 Figure 8     Plot of δ13C vs. σ13C.    
 Trendline   δ   13 C = (177.9 ± 1.8) - (0.88 ± 0.03)   σ   13 C, n = 12, R 2  = 0.988 
[eq. 13].    

fairly well correlated:   δ   1 H = (30.8 ± 1.1) - (0.96 ± 0.04)   σ   1 H, 
n = 12, R 2  = 0.980 [eq. 11]. 

 To discuss  11 B chemical shifts, we have included two other 
boron derivatives to increase the range. The results are re-
ported in Figure  7  . 

  Figure  8   represents the  13 C NMR results. The worst points 
are C5 of  5a  and C3 of  2  (but its 140.8 ppm value was an esti-
mated value not a measured one). Similarly, we found for  15 N 
data:   δ   15 N =  - (157.6 ± 1.7) - (0.85 ± 0.02)   σ   15 N, n = 8, R 2  = 0.995 
[eq. 14].  

  Experimental vs. calculated coupling constants 

(Tables 3 and 5) 

 At difference from chemical shifts, all coupling constants can 
be compared irrespective of the nuclei involved (Figure  9 ). One 
problem is that small values for the cluster near 0 are not a good 
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criteria of quality. The main problem is that the sign of experi-
mental SSCC (spin-spin coupling constants) has not been de-
termined, thus we have two possibilities; (1) to assume that 
all of them are positive, i.e. to discuss the absolute values, or 
(2) to assume that the calculated sign is correct. In the present 
case it happens, by coincidence, that all the coupling constants 
that have been measured have positive calculated values. 

 First, we have used all the calculated values,  4a ,  4b , 
 4a,b  (80 %   4a /20 %   4b ),  5a  and  5b  obtaining the following 
equation:  J  exp  = (0.56 ± 0.32) + (1.076 ± 0.004)  J  calcd , n = 103, 
R 2  = 0.999 [eq. 15]. Since, the largest residues belong to  5b , 
the corresponding calculations were removed:  J  exp  = (0.46 ±  
0.35) + (1.076 ± 0.004)  J  calcd , n = 87, R 2  = 0.999 [eq. 16]. In a sec-
ond step, we analysed the residuals of equation 16 for com-
pounds  4a ,  4b  and  4a,b . The small residual corresponds to 
 4a,b , therefore we removed the points corresponding to  4a  
and  4b  obtaining equation 17 reported in Figure  9 . 

 The experimental value of  1  J (C 5 H 5 ) of  3  (183.9   Hz, Table 
 2 ) is dubious because it has been measured in a complex sig-
nal. There are two couplings not well reproduced  1  J (BH) of  3  
(100   Hz) and  1  J (N 1 B) of  5  (30.0   Hz). In general,  1  J  CH  SSCC 
are underestimated by the calculations by 10   Hz on aver-
age; therefore we decided to examine these couplings sepa-
rately. We report in Figure  10   a plot of  1  J  CH  experimental  vs . 
 1  J  CH  calculated for  1  J  C3H3  (half-fi lled circles),  1  J  C4H4  (black 
squares) and  1  J  C5H5  (empty squares). 

 Although experimental values could contain some uncertain-
ties, the large deviations observed for  1  J C 5 H 5  (white squares) 
are due to the inability of the method to calculate this coupling 
which involved H atoms closest to other pyrazole rings.  

  Predicted values 

 There are several chemical shifts and many coupling con-
stants that have no experimental counterpart: they can be used 
as such or using the empirical equations we have described 
along this paper, to predict with acceptable accuracy their val-
ues, including the outsiders.   
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Figure 9 Equation of the trendline: Jexp (Hz)=(1.079±0.005) Jcalcd 
(Hz), n=53, R2=0.999 [eq. 17]. calcd., calculated.
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 Figure 10    Equation of the trendlines:  1  J C 3 H 3  exp. = (88 ± 39) + 
(0.56 ± 0.23)  1  J C 3 H 3  calcd., n = 4, R 2  = 0.74 [eq. 18];  1  J C 4 H 4  exp. = 
(79 ± 12) + (0.60 ± 0.08)  1  J C 4 H 4  calcd., n = 4, R 2  = 0.97 [eq. 19]. The 
 1  J C 5 H 5  values are not correlated. exp., exponential.    

  Conclusions 

 The large collection of NMR properties previously deter-
mined for pyrazolylborates ( L ó pez et al., 1990 ) is well re-
produced by DFT calculations. Some irregularities were 
detected that are not due to solvent effects and not to difer-
rent counterions, since the experimental values were deter-
mined in high dissociating solvents (DMSO- d   6   and D 2 O). 
Many other calculated values are available that can be used 
for predictive purposes.  

  Computational details 

 All calculations were carried out using the facilities of the 
Gaussian 03 package (Frisch et al. , 2003 ). The geometry of 
the molecules has been fully optimised at the B3LYP compu-
tational method (Becke , 1988 ; Lee et al. , 1988 ; Becke , 1993 ) 
with the 6-311 +  + G(d,p) basis set (Ditchfi eld et al. , 1971 ; 
Frisch et al. , 1984 ). Harmonic frequency calculations were 
carried out to verify that all the structures were minima or tran-
sition states (TS) (McIver and Komornicki , 1972 ). Absolute 
shieldings were calculated within the GIAO approximation 
(London, 1937; Ditchfi eld , 1974   ). Absolute shieldings (  σ  , 
ppm) and coupling constants (Hz) of compounds  1  –  5  can be 
obtained on request to one of the authors.   
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